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Chaotic itinerancy is a universal dynamical concept that describes itinerant motion among many different
ordered states through chaotic transition in dynamical systems. Unlike the expectation of the prevalence of
chaotic itinerancy in high-dimensional systems, we identify chaotic itinerant behavior from a relatively simple
ecological system, which consists only of two coupled consumer-resource pairs. The system exhibits chaotic
bursting activity, in which the explosion and the shrinkage of the population alternate indefinitely, while the
explosion of one pair co-occurs with the shrinkage of the other pair. We analyze successfully the bursting
activity in the framework of chaotic itinerancy, and find that large duration times of bursts tend to cluster in
time, allowing the effective burst prognosis. We also investigate the control schemes on the bursting activity,
and demonstrate that invoking the competitive rise of the consumer in one pair can even elongate the burst of
the other pair rather than shorten it.

DOI: 10.1103/PhysRevE.76.065201 PACS number�s�: 05.45.Ac, 05.45.Xt, 87.23.�n, 89.75.�k

Since attractors determine the long-term behavior of dy-
namical systems, the concept of attractors is central to the
analysis of many natural and artificial systems �1�. In gen-
eral, the phase space of a nonlinear dynamical system is
partitioned into various basins of attraction from which states
evolve towards the respective attractors. These stable attrac-
tors can lose their stability with a change of the system con-
dition such that the basin of attraction of each attractor be-
comes connected to each other through unstable manifolds.
Hence, a dynamical state which sequentially traces out all of
the destabilized attractor ruins emerges. This is referred to
as a chaotic itinerant state �2�. The notion of chaotic itiner-
ancy has received considerable attention in studying the
adaptability of complex systems, especially in relation to
brain information processing �2,3�.

To embed a chaotic itinerant state, a system is expected to
have a high degree of complexity; therefore, models of cha-
otic itinerancy are mostly built on high-dimensional phase
space �4�. Albeit relatively low-dimensional systems, two
coupled Morris-Lecar neural oscillators were found to ex-
hibit chaotic itinerancy �5�, the result seems to be limited to
a rather special case obtained by using sophisticated forms of
model equations in neurobiological systems. In the present
work, we report that low-dimensional chaotic itinerancy ex-
ists and arises naturally in a simple ecological system, of
which consumer-resource dynamics has broad relevance in
metabolic, immune, social, and economical systems. The
wide variety of related disciplines aside, the mathematical
simplicity of our low-dimensional system renders the global
organization of a chaotic itinerant state tractable with a de-
tailed illustration.

At the outset, we suggest the equations of two consumer-
resource pairs coupled via resource sharing �6�,

dC1�2�

dt
= aC1�2�� R1�2�

� + R1�2�
+

DR2�1�

� + R2�1�
� − bC1�2�,

dR1�2�

dt
= R1�2� − R1�2�

2 −
�C1�2� + DC2�1��R1�2�

� + R1�2�
, �1�

where C1�2� and R1�2� represent the population of consumer 1
�2� and resource 1 �2�, respectively. a and b denote the
growth and decay rates of the population of consumers. �
concerns the satiability level of the consumers taking re-
sources. For simplicity in our analysis, we do not distinguish
the parameter sets of the two consumer-resource pairs. In this
equation, R1�2� is taken by C1�2� primarily, as well as by C2�1�
with a relative small uptake rate D, which ranges from 0 to 1.

When D is equal to zero, Eq. �1� splits into two Holling
type-II forms of Lotka-Volterra equations �7�, and the popu-
lations of each consumer-resource pair can exhibit a limit
cycle oscillation. If D takes a nonzero value close to 0 or 1,
synchronous limit cycle oscillation between the two
consumer-resource pairs arises. Complicated dynamics de-
velop at intermediate range of D, where we can observe ir-
regular bursting activities as in Figs. 1�a�–1�c�. Time trajec-
tories of C1 and C2 in Fig. 1�c� show the bursting behaviors,
and those of R1 and R2 show the similar patterns as well. C1
and C2, or R1 and R2, fire bursts in an antiphase-
synchronized way, such that the explosion of C1 or R1 co-
occurs with the shrinkage of C2 or R2, and vice versa. It is
worth noting that other equations with similar systems to Eq.
�1� also support the existence of such antiphase-synchronized
irregular bursts �8�. For numerical simulations, we use the
parameters a=2, b=0.82, �=0.33, and D=0.57 unless speci-
fied.

To check whether the apparent irregularity of the bursts
implies their initial condition sensitiveness, we evaluate
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M1�2��t� =
1

t
�

0

t

H�C1�2��t���H�C1�2�� �t���dt�, �2�

where H�X�=1 if X is in the burst mode, otherwise H�X�=
−1. The antiphase synchronization of the bursts enables us to
define the burst mode unambiguously, such that once C1�2�
exceeds C2�1�, C1�2� enters the burst mode, and C2�1� enters
the shrinkage mode. C1�2�� �t� is calculated in the same way as
C1�2��t�, but is initially perturbed from C1�2��t� with �

= �C1�2�� �0�−C1�2��0� � /C1�2��0��1. Therefore, Eq. �2� gives
the similarity between the bursting times of C1�2��t� and those
of C1�2�� �t� with slightly different initial conditions. If the
bursting times of C1�2��t� and C1�2�� �t� are in complete agree-
ment, M1�2��t�=1, whereas with no correlation between
them, M1�2��t�=0. In the following, we drop the subscript of
M1�2��t� due to the statistical equivalence of C1�t� and C2�t�.
One can employ M�t� for determining the necessary time for
the discrepancy to be significant between the bursting times
of C1�2��t� and of C1�2�� �t�. It is observed that M�t� evolves
rapidly from 1 to 0 in the irregular bursting regime; thus, the
half-life time �h of M�t� can serve as the characteristic time
scale of the discrepancy growth. Figure 1�d� shows that �h

scales logarithmically to �, and using R1�2��t� and R1�2�� �t�
instead of C1�2��t� and C1�2�� �t� in Eq. �2� does not alter the
current result. This logarithmic scaling reveals that the burst-
ing is sensitive to the initial conditions, i.e., behaves chaoti-
cally �9�.

To address such antiphase-synchronized chaotic bursts in
detail, we divide a period of bursts into four stages - S1, S1�,
S2, and S2�, as in Fig. 1�e�. In stage S1, C1 and R1 dominate
C2 and R2, while C1, which is supported primarily by R1,
depresses severely the growth of R2, and thereby of C2.
Nonetheless, R2 increases gradually in the negligible pres-
ence of C2, and R1 comes to decline with overpopulated C1
which takes both R1 and R2. In stage S1�, the resultant
shrinkage of R1 ensures that C1 depends mostly on R2 for
survival. Meanwhile, R2 can boost the increase of C2, which
then suppresses both R2 and R1, thereby leading to the drastic
decay of C1 in stage S2 �10�. The dominance of C2 and R2 in
stage S2 is totally symmetric to that of C1 and R1 in stage S1.
Accordingly, stage S2� analogous to stage S1� follows, and
leads to stage S1 for the next period.

Each stage occupies finite time span, forming a quasis-
table dynamical state. The alternating dominance of each
species along the stages may be equivalent to the switching
events among the sets of attractor ruins. In order to elucidate
the underlying attractor ruin for a given stage, we consider
an invariant subspace of �C1 ,R1 ,C2 ,R2� which contains only
the species governing the stage �see Fig. 1�e��: at stage S1
�C1 ,R1 ,0 ,0�; at stage S1� �C1 ,0 ,0 ,R2�; at stage S2
�0,0 ,C2 ,R2�; at stage S2� �0,R1 ,C2 ,0�. The populations
confined within each invariant subspace approach their own
asymptotic solution. For instance, the limit cycle oscillation
of C1 and R1 characterizes the asymptotic solution in the
invariant subspace of stage S1 and thus underlies the burst-
ing activity at this stage. Figure 2�a� shows an actual time
trajectory of the populations in phase space, which also em-
beds the asymptotic solutions in the invariant subspaces.
Near an invariant asymptotic solution, the trajectory remains
there for a long time, but finally escapes towards another
invariant solution at the next stage.

This escaping event is due to an existence of unstable
manifolds outward from an invariant subspace. Along the
transverse direction of the invariant subspace, we then per-
form a linear stability analysis to find the unstable manifolds,

S1:
d�R2

dt
	 �1 − D

C1

�
��R2,

S1�:
d�C2

dt
	 
min� b

D
,

a

1 + �
� − b��C2, �3�

where C1 of stage S1 is evaluated in the absence of C2 and
R2. Stages S2 and S2� take the formula obtained simply by
interchanging C1 and C2, R1 and R2 of stages S1 and S1� in
Eq. �3�. The formula of unstable manifolds reveals which
species causes the instability of a given stage; the instability
of stages S1 and S1� is invoked by the increase of R2 and C2,
as described above in the ecological argument. From Eq. �3�,
we recognize that increase of D tends to reduce the coeffi-
cients in the right-hand sides, i.e., to decrease the escape
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FIG. 1. �a� and �b�: Parameter regime of irregular bursting ac-
tivities in Eq. �1� with a=2, when �a� b=0.82 or �b� �=0.33. �c�
Time series of C1 and C2 in bursting activity. The arrowed time
interval is magnified in �e�. �d� Half-life time �h of burst reproduc-
ibility with initial condition difference �. �e� Magnification of the
arrowed time interval in �c�. Solid lines denote C1 and R1, and
dotted lines C2 and R2.
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rates along the unstablemanifolds. The resultant relaxation of
the switching events among attractor ruins is identified by
comparing Figs. 2�a� and 2�b�, where consistently the trajec-
tory between the invariant solutions looks less intermingled
with increased D. The most evident effect of elongated resi-
dence in attractor ruins appears in Fig. 2�c�: the distribution
of burst duration T shifts to large value as D increases. More-
over, the larger D is, the higher the right peak of the bimodal
duration distribution is, relatively to the left peak. We con-
clude that in the chaotic bursting regime, the enhanced cou-
pling strength induces either of the consumer-resource pairs
to dominate the other for a long time by an elongated burst-
ing activity.

To investigate the bimodality appearing in Fig. 2�c�, we
plot a return time map for burst initiations of consumers by
considering the terms between the initiation of stage S1 and
that of stage S2, and between the initiation of stage S2 and
that of stage S1, and so on. Figures 3�a� and 3�b� display
nearly one-dimensional curves of such return time maps,
where stepwise jumps between the upper and lower extremes
are responsible for the bimodality in Fig. 2�c�. The relative
expansion of upper extremes in Fig. 3�b� induces the right
side of the duration distribution in Fig. 2�c� to be highly
peaked.

Referring to the return time maps, we find that mapping
trajectories are frequently trapped in boxed area B in Figs.
3�a� and 3�b�. The distribution of residual times N �total
number of iteration� within boxed area B is indeed more
right skewed than those of any other areas �e.g., B�� with the
same size �Figs. 3�c� and 3�d��. The distribution within area
B follows exponential fit P�N�� pN with p=0.64 for D=0.5
and p=0.68 for D=0.57, and shows significantly larger p
than the surrogated data �p=0.33 for D=0.5, p=0.28 for
D=0.57� with the same distribution of burst duration time.
This indicates the residual dynamics within area B follows a
poissonian process, but with considerable survivability p per
iteration. Since area B corresponds to relatively long dura-
tions of bursts, large duration times of bursts tend to cluster
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FIG. 2. �Color online�. �a� Projection of time trajectory onto
�R1−R2 ,C1−C2� for �t=3000, D=0.57 �thin line, red in color on-
line�. Overlapped is invariant solution at each stage �black�. �b�
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in time, as partially observed in Fig. 1�c�. In this regard, the
known information about the past duration could be benefi-
cial to improve the burst prognosis efficiently.

An important outcome of the stability analysis on attractor
ruins is the application to a control scheme on burst duration.
Since a rise of R2�1� destabilizes the dominance of C1�2� and
R1�2�, manually repressing the growth of R2�1� might elongate
the bursts of C1�2� and R1�2�. As shown in Figs. 4�c� and 4�d�,
the repressed growth of R2 prevents the overpopulation of C1
for a while and thus delays the shrinkage of R1 as well as of
C1. It should be noticed that the effect of delayed rise of C2
herein is not so essential to elongating the burst duration,
despite the resource competition between C2 and C1. Coun-
terintuitively, even promoting the growth of C2 could be
helpful to the burst duration, if resulting in the depression of
R2. Figures 4�e� and 4�f� indeed illustrate the possibility that
a sufficiently large perturbation to increase C2 withdraws
transiently R1 and C1, but also delays the growth of R2
thereby elongating the bursting activity �11�.

In summary, we investigated a simple dynamical system,
which consists only of two consumer-resource pairs but ex-
hibits chaotic itinerancy naturally. The mathematical simplic-
ity of the system gives rise to a clear view of the organization
of a chaotic itinerant state, where each consumer-resource

relationship underlies its corresponding attractor ruin as a
dynamical “building block.” Such concept of building blocks
could be generically utilized when one designs other systems
exhibiting chaotic itinerancy. In addition, analysis on a cha-
otic itinerant state was found to be applicable to the progno-
sis and control of the dynamical system, in the rather coun-
terintuitive way. Beyond the suggested ecological system,
any dynamical system which shows antiphase-synchronized
chaotic bursts might be analyzable in the framework of cha-
otic itinerancy via our methodology. We expect that host-
parasitoid systems with whiteflies and their parasitic wasps
could be employed for experimental validation of our results,
since parasitic wasps �consumers� are known to have over-
lapped hosts �resources� in a manner similar to the present
model �12�.
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